Impact of Nitridation on Bias Temperature Instability and Hard Breakdown Characteristics of SiON MOSFETs

We study how nitridation, applied to SiON gate layers, impacts the reliability of planar metal-oxide-semiconductor field effect transistors (MOSFETs) subjected to negative and positive bias temperature instability (N/PBTI) Elbow Guards as well as hard breakdown (HBD) characteristics of these devices.Experimental data demonstrate that p-channel transistors with SiON layers characterized by a higher nitrogen concentration have poorer NBTI reliability compared to their counterparts with a lower nitrogen content, while PBTI in n-channel devices is negligibly weak in all samples independently of the nitrogen concentration.The Weibull distribution of HBD fields extracted from experimental data in devices with a higher N density are shifted Bowl towards lower values with respect to that measured in MOSFETs, and SiON films have a lower nitrogen concentration.

Based on these findings, we conclude that a higher nitrogen concentration results in the aggravation of BTI robustness and HBD characteristics.

Leave a Reply

Your email address will not be published. Required fields are marked *